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Abstract

Recent methods for conditional image generation benefit
from dense supervision such as segmentation label maps
to achieve high-fidelity. However, it is rarely explored to
employ dense supervision for unconditional image genera-
tion. Here we explore the efficacy of dense supervision in
unconditional generation and find generator feature maps
can be an alternative of cost-expensive semantic label maps.
From our empirical evidences, we propose a new generator-
guided discriminator regularization (GGDR) in which the
generator feature maps supervise the discriminator to have
rich semantic representations in unconditional generation.
In specific, we employ an U-Net architecture for discrim-
inator, which is trained to predict the generator feature
maps given fake images as inputs. Extensive experiments
on mulitple datasets show that our GGDR consistently im-
proves the performance of baseline methods in terms of
quantitative and qualitative aspects. Code is available at
https://github.com/naver-ai/GGDR.

1. Introduction

Generative adversarial networks(GANs) have achieved
promising results in various computer vision tasks including
image [27–29] or video generation [53, 59, 60, 65], transla-
tion [7,20,31,34,73], manipulation [3,15,22,30,36,50], and
cross-domain translation [18, 35] for the past several years.
In GANs, building an effective discriminator is one of the
key components for generation quality since the generator
is trained by the feedback from the discriminator. Existing
studies proposed various methods to make the discriminator
learn better representations by data augmentation [26,69–71],
gradient penalty [42, 43, 46], and carefully designed archi-
tectures [25, 49].

One simple yet effective way to improve the discriminator
is to provide available additional annotations such as class la-
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Figure 1. Comparison of how to provide semantic information
between OASIS and our method. OASIS enhance the discriminator
with the ground truth label maps in conditional image generation
setting. GGDR, on the other hand, aims at unconditional image
synthesis, and uses the generator feature maps instead of human-
annotating label maps.

bels [5, 44], pose descriptors [52], normal maps [62], and se-
mantic label maps [20, 41, 45, 56]. Among these annotations,
semantic label maps contain rich and dense descriptions
about images, and have been frequently used in conditional
scene generation. To provide dense semantic information
to the discriminator, Pix2pix [20] and SPADE [45] concate-
nate the label maps with input images, and CC-FPSE [41]
uses projection instead of the concatenation to inject the
embedding of label maps. OASIS [56] further enhances the
discriminator by providing strong supervision using auxiliary
semantic segmentation task and achieves better performance.

Despite the success of dense semantic supervision in
conditional generation, it has been rarely explored in an
unconditional setting. Dense semantic supervision can be
useful here as well, as GAN models often struggle when
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the data has varied and complex layout images. However, in
unconditional generation, most large datasets do not have
pairs of images and semantic label maps, since collecting
them has a significant human annotation cost. Therefore,
unlike the conditional setting, which requires a dense label
map for the generator input, unconditional image generation
assumes no dense map, and most studies use discriminators
that learn only from images.

In this paper, we show that guiding a discriminator us-
ing dense and rich semantic information is also useful in
unconditional image generation, and propose the method
that avoids data annotation costs while utilizing semantic
supervision. We propose generator-guided discriminator
regularization (GGDR) in which the generator feature maps
supervise the discriminator to have rich semantic representa-
tions. Specifically, we redesign the discriminator architecture
in U-Net style, and train the discriminator to estimate the
generator feature map when input is a generated image. As
shown in Fig. 1, GGDR differs from the previous work in
that the discriminator is supervised by the generator feature
maps instead of human-annotated semantic label maps.

To justify our proposed method, we first compare the gen-
eration performance of StyleGAN2 [29] with and without
providing ground-truth segmentation maps to the discrim-
inator, and show that utilizing semantic label maps indeed
improves the generation performance in an unconditional
setting (Section 2.1). We then visualize the generator fea-
ture maps and show that they contain semantic information
rich enough to guide the discriminator, replacing the ground-
truth label maps (Section 2.2). Utilizing the generator fea-
ture maps, GGDR improves the discriminator representation,
which is the key component to enhance the generation per-
formance (Section 3). We provide thorough comparisons to
demonstrate that GGDR consistently improves the baseline
models on a variety of data. Our method can be easily at-
tached to any setting without burdensome cost; only 3.7% of
the network parameter increased. Our contributions can be
summarized as follows:

1. We investigate the effectiveness of dense semantic su-
pervision on unconditional image generation.

2. We show that generator feature maps can be used as an
effective alternative of human-annotated semantic label
maps.

3. We propose generator-guided discriminator regulariza-
tion (GGDR), which encourages the discriminator to
have rich semantic representation by utilizing generator
feature maps.

4. We demonstrate that GGDR consistently improves the
state-of-the-art methods on multiple datasets, especially
in terms of generation diversity.

D

Inferred

label map

Real

image

Real/Fake

GT

maps

Segmentation loss

Figure 2. Discriminator architecture with the auxiliary segmenta-
tion loss for the preliminary experiments.
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Figure 3. FID scores on ADE20K with and without dense semantic
supervision in the preliminary experiments.

2. Dense semantic supervision in unconditional
GANs

We first conduct a preliminary experiment using ground-
truth segmentation maps to show the efficacy of pro-
viding dense semantic supervision for the discriminator
(Section 2.1). Then, we study whether the generator fea-
ture maps can be used as a guide instead of using human
annotating ground-truth label maps to avoid expensive man-
ual annotations. We visualize the internal feature maps of the
generator and show that they have semantic information rich
enough to be used as pseudo-semantic labels (Section 2.2).

2.1. Utilization of semantic label maps for discrim-
inator

Although it is natural to utilize semantic label maps in
conditional image generation [41, 45, 56], it has been still
underexplored whether label maps are beneficial for uncon-
ditional image generation [26, 28, 29]. We conduct a pre-
liminary experiment to validate the effects of the seman-
tic label maps. We use ADE20K scene parsing benchmark
dataset [72] consisting of 20,210 paired images and semantic
label map annotations with 150 class labels, which is fre-
quently used to evaluate conditional generation models. We
choose StyleGAN2 [29] as our baseline, which is a standard
model for unconditional image generation and apply adap-
tive discriminator augmentation [26]. To provide semantic
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supervision for the network, we redesign the discriminator to
perform additional segmentation task similar to OASIS [56].
The modified task for the discriminator is described in Fig. 2.
The detailed architecture is similar to Fig. 5, except that it
upsamples the decoder output until the image size is reached.
The decoder in a U-Net style is attached to the discrimina-
tor and the segmentation loss is applied to the last layer of
the decoder to provide dense supervision. The segmentation
loss is the usual cross-entropy loss. Since ground-truth label
maps are not available for generated images, we activate the
segmentation loss for real images only.

As shown in Fig. 3, the model with the discriminator
leveraging the semantic supervision(ADA with GT) outper-
forms the baseline(ADA w/o GT). As argued in OASIS, the
stronger semantic supervision seems to help discriminator
learn more semantically and spatially-aware representations
and give the generator more meaningful feedback. Our ex-
periment supports that providing additional semantic guide
for the discriminator can improve the model performance in
unconditional image synthesis. However, dense label maps
are rare in datasets for unconditional image synthesis, and
it is time-consuming to collect them manually. In the next
section, we analyze the feature maps from the generator as
an effective alternative for the ground-truth label maps.

2.2. Analysis of generator feature maps

Recent studies have reported that the feature maps of the
trained generator of GANs contain rich and dense semantic
information [9, 11, 63]. Collins et al. [9] showed that apply-
ing k-means clustering to the feature maps of the generator
reveals semantics and parts of objects, and used the clusters
to edit images. We notice that these feature maps are rich
semantic descriptors of the generated images and can be the
substitute for the ground truth label maps. To visualize what
information is captured in each feature map, we run k-means
algorithm on each layer using the batch of generated images.
We set k = 6 in this experiment. As shown in Fig. 4 (a), the
pixels are clustered by the semantic information instead of
the low-level features except the last feature map. For ex-
ample, the hairs of the people have different colors, but are
clustered in to the same cluster. The early feature maps show
coarse object location, and those from the latter layers con-
tain detailed object parts. The visualized feature maps look
like pseudo-semantic label maps and might be regarded as
rich descriptions including spatial and semantic information
about the images. Therefore, we choose the feature maps of
the generator as the substitute for the semantic label maps
to guide the discriminator using semantic supervision. The
generator feature maps are useful in our case. First, we do
not need perfect semantic segmentation maps because our
goal is image generation not semantic segmentation. Second,
the feature maps are intermediate by-products essential for
the generation, so acquiring them is free and does not require

fake 16×16 32×32 64×64 128×128

(a) Generator feature map visualization

3k iters (0.8%) 6k iters(1.6%)

(b) Generator feature map in early training phase

Figure 4. Visualization of the generator feature maps using k-
means(k = 6) clustering. (a) StyleGAN2 generator feature map.
The visualized feature maps reveal semantically consistent and
meaningful regions such as ears in cats. (b) Generated images and
their 32× 32 feature maps in the early training phase.

additional human annotations.
Dissimilar to previous works [9, 11, 63] that utilize the

generator feature map for separate tasks, our method utilizes
them during the training to enhance the generation perfor-
mance itself. Therefore, it is essential to check whether the
feature maps from the generator in the middle of training
are still semantically meaningful for the guidance. In Fig. 4
(b), we visualize the feature maps of the generator during
training to check how early the feature maps become se-
mantically meaningful. Surprisingly, thanks to the powerful
modern GANs, we can observe that even in the early stage,
the feature maps and the corresponding generated images
capture coarse shapes and location of objects. Therefore,
we utilize the feature maps from the beginning of training,
but for more complex data where the generator needs more
iterations to produce meaningful semantics, one may choose
when to attach our objective function.
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3. Generator-guided discriminator regulariza-
tion

Based on our observations, we propose generator-guided
discriminator regularization (GGDR) in which the gener-
ator feature maps supervise the discriminator to have rich
semantic representations. The overall framework is shown
in Fig. 5.

The design of our discriminator D is inspired by that
of OASIS [56] where the U-Net encoder-decoder structure
is adopted and the last layer predicts semantic label maps.
However, unlike OASIS, we leverage feature maps of the
generator instead of ground-truth label maps. Thus, there
are several differences in the design. First, since the feature
maps are not discrete labels anymore, we cannot simply
add real/fake class to the decoder output as done in OA-
SIS. Therefore, we separate the decoder and adversarial loss.
Next, we use more compact and lighter modules to reduce
additional calculation costs. For each layer, we concatenate
the output from the decoder and the encoder layer, and run
one linear 1 × 1 convolutional layer with upsampling. We
stack the decoder modules until the decoder output has the
same resolution with the targeted generator feature map.
Although the decoder is compact, it is sufficient to predict
the generator feature map as the shared encoder can extract
semantic information.

Meanwhile, the encoder part is still shared, and thus it
is trained via both semantic and adversarial loss. For the
adversarial loss, we adopt the non-saturating adversarial
loss [13]:

min
G

max
D
Ladv(G,D) = Ex∼pdata(x)[logD(x)]+

Ez∼p(z)[log(1−D(G(z)))] (1)

Next, we compute the cosine distance loss between the
output of the decoder and the target feature map. We use
cosine distance loss since it gives a loss within a specified
range even between denormalized feature vectors, so it is
convenient to scale according to the adversarial loss. Here,
we denote l ∈ {1, 2, ..., L} as a layer index, where L is the
number of decoding layers. Our discriminator D contains an
U-Net-style decoder F (F ⊂ D) and the output of each layer
denoted asF l has the same resolution with the corresponding
generator feature map G(z)l. Let us denote the target layer
index for guidance as t. Our generator-guided discriminator
regularization (GGDR) is defined as:

max
D
Lggdr(G,D) =

− Ez∼p(z)

[
1− F t(G(z)) ·G(z)t

‖F t(G(z))‖2 · ‖G(z)t‖2

]
(2)
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Figure 5. Visualization of our framework. Our method can be ap-
plied to a GAN model by adding a decoder and the cosine distance
loss with the reference generator feature maps to a discriminator.
The generator feature maps guide the discriminator to learn more
semantically-aware representations.

Our full objective functions can be summarized as fol-
lows:

Ltotal = Ladv + λregLggdr (3)

where λreg is a hyperparameter for relative strength com-
pared to the adversarial term. Note that k-means clustering
used in Section 2.2 is only for visualization purpose and we
directly compare raw feature maps without any clustering.
We expect the Lggdr term to enhance the semantic represen-
tation of D. While the generator feature maps participate
the regularization loss, we do not update the generator with
Lggdr to prevent a feature collapse which is a trivial solution
making the cosine distance to zeros.

Our framework is simple and easy to apply existing GAN
models, and does not require any additional annotation. Ac-
quiring the intermediate feature maps from a generator is
free because the generator already produces them in order
to generate fake images. Despite its simplicity, in the next
section, we show the effectiveness of our method in uncon-
ditional image generation for various datasets.

4



Table 1. FID scores of ours and comparison methods on FFHQ. We
run three training for each data and show their means and standard
deviations. The numbers are largely brought from ADA [26] and
we follow their evaluation protocol.

FFHQ 2k 10k 140k

PA-GAN 56.49±7.28 27.71±2.77 3.78±0.06
WGAN-GP 79.19±6.30 35.68±1.27 6.43±0.37

zCR 71.61±9.64 23.02±2.09 3.45±0.19
AR 66.64±3.64 25.37±1.45 4.16±0.05

StyleGAN2 78.80±2.31 30.73±0.48 3.66±0.10
+GGDR 70.59±5.16 24.44±0.63 3.14±0.03

ADA 16.49±0.65 8.29±0.31 3.88±0.13
+GGDR 18.28±0.77 6.11±0.15 3.57±0.10

4. Experiments
We validate the efficacy of our GGDR on various datasets

including CIFAR-10 [37], FFHQ [28], LSUN cat, horse,
church [64], AFHQ [8] and Landscapes [2]. CIFAR-10 con-
sists of 50,000 tiny color images in 10 classes. FFHQ con-
tains 70,000 face images, and AFHQ includes approximately
5,000 images per cat, dog and wild animal faces. LSUN cat,
horse and church consist of scenes with cat, horse and church
respectively, and we have used 200,000 images per each
dataset. Landscapes contains photographs 4,320 landscape
images collected from Flickr [1]. Following StyleGAN2 and
ADA [26], we have applied horizontal flips for FFHQ and
small datasets. All images are resized to 256× 256 except
AFHQ (512 × 512) and CIFAR-10 (32 × 32). For GGDR
loss, we select the 64× 64 feature map of the generator as
the guidance map, except CIFAR-10 where we select the
8× 8 feature map. We set λreg = 10 for the weight of the
proposed regularization in all experiments and let other hy-
perparameters unmodified. We apply R1 regularization [42]
for StyleGAN2 and ADA models. In the case of the ADA,
we apply the augmentation to the generator feature maps to
make them consistent with corresponding fake images. We
use only geometric operations and skip color transformation
for the feature map augmentation.

For evaluation metrics, we have used Fréchet Inception
Distance(FID) [16] and Precision & Recall [39]. FID mea-
sures the distance between the real images and the generate
samples in feature space, and Precision & Recall scores
indicate sample quality and variety. We compare 50,000
generated images and all training images following previ-
ous works [26]. For CIFAR-10, we also use Inception Score
(IS) [47] following the previous works [26, 54].

4.1. Comparison with baselines

We apply GGDR to StyleGAN2 [29] which is one of the
standard models for unconditional image generation. Instead

Table 2. FID scores of ours and comparison methods on CIFAR-10.
We run three training for mean and standard deviations. We brought
the numbers of diffusion models from [54].

CIFAR-10 FID IS

ProGAN 15.52 8.56±0.06
AutoGAN 12.42 8.55±0.10

StyleGAN2 8.32±0.09 9.21±0.09
ADA 2.92±0.05 9.83±0.04

FSMR 2.90 9.68

DDPM 3.17±0.05 9.46±0.11
NCSN++ 2.2 9.89

ADA+GGDR 2.15±0.02 10.02±0.06

of the original StyleGAN2 setting, we use the baseline set-
ting used in ADA [26] which has less parameters and shorter
training iterations but shows comparable performance. For
small datasets, we apply the adaptive discriminator augmen-
tations (ADA) [26] that prevents overfitting of the discrimi-
nator and shows the superior performance in small datasets.

Table 1 and Table 2 shows that the proposed GGDR im-
proves the performance of the baselines in terms of FID
scores which indicate the overall quality of the synthesized
images. Following ADA [26], we run the experiment multi-
ple times on FFHQ with varying numbers (2k, 10k and 140k)
of training images. We largely borrowed the reported scores
from ADA [26] and NCSN++ [54]. In Table 1, we compare
our method in a varied number of training images with vari-
ous regularizing methods WGAN-GP [14], PA-GAN [67],
zCR [71], AR [6] and ADA [26]. In the table, StyleGAN2
with our GGDR achieves the best score on FFHQ with full
training images. With a sufficient number of training images,
regularization methods based on data augmentation show
limited improvement or degradation, whereas in our method
the discriminator learns from a more accurate semantic map
provided by a better quality generator. In most cases, GGDR
improves the baseline performance significantly except the
FFHQ 2k setting. We conjecture the dataset is too small to
learn semantically meaningful feature maps in the generator.
Since the quality of generator feature maps directly affects
the discriminator in our method, our method is more effective
when there is sufficient number of training data. However,
as shown in Table 4, our method shows effectiveness on the
datasets with approximately 5,000 images which are not too
many to collect. Table 2 shows that our GGDR significantly
improves ADA performance in terms of both FID and IS
scores, and makes it superior to various models including
ProGAN [25], AutoGAN [12], FSMR [33] and DDPM [17],
and comparable to the NCSN++ [54].

In Tables 3 and 4, we conduct extensive experiments to
validate the performance improvement using GGDR on vari-
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Table 3. Comparision on FFHQ, LSUN Cat, LSUN Horse and LSUN Church. Our method improves StyleGAN2 [29] in large datasets in
terms of FID and recall. P and R denote precision and recall. Lower FID and higher precision and recall mean better performance. The bold
numbers indicate the best FID, P, R for each dataset.

Method
FFHQ LSUN Cat LSUN Horse LSUN Church

FID↓ P↑ R↑ FID P R FID P R FID P R

UT [4] 6.11 0.73 0.48 - - - - - - 4.07 0.71 0.45
Polarity [19] - - - 6.39 0.64 0.32 - - - 3.92 0.61 0.39

StyleGAN2 3.71 0.69 0.44 7.98 0.60 0.27 3.62 0.63 0.36 3.97 0.59 0.39
+GGDR 3.14 0.69 0.50 5.28 0.58 0.38 2.50 0.64 0.43 3.15 0.61 0.46

Table 4. Comparision on AFHQ Cat, Dog, Wild and Landscape. Our method improves ADA [26] in small datasets in terms of FID and
recall. P and R denote precision and recall. The bold numbers indicate the best FID, P, and R of the models.

Method
AFHQ Cat AFHQ Dog AFHQ Wild Landscape

FID↓ P↑ R↑ FID P R FID P R FID P R

FastGAN [40] 4.69 0.78 0.31 13.09 0.75 0.38 3.14 0.76 0.20 16.44 0.77 0.16
ContraD [23] 3.82 - - 7.16 - - 2.54 - - - - -

ADA 3.55 0.77 0.41 7.40 0.76 0.48 3.05 0.76 0.13 13.87 0.72 0.20
+GGDR 2.76 0.74 0.52 4.59 0.79 0.53 2.06 0.80 0.27 10.38 0.69 0.29

ous datasets. For FFHQ and LSUN datasets, we report the
scores of UT [4], and Polarity [19] which are the state-of-
the-arts models that show the improvement on these datasets.
For AFHQ and Landscape datasets, we report the score of
ContraD [23] and FastGAN [40] that show significant im-
provements on image synthesis with small size datasets. We
brought the numbers from their papers except FastGAN
whose scores are brought from ProjGAN [48]. GGDR con-
sistently improves the baseline in terms of FID scores with
large gap. In terms of precision and recall metrics, GGDR
improves the recall with significant margins compared to the
baselines, which indirectly indicates where the advantages
of our method come from. Better recall scores mean that our
model generates more diverse images and less prone to the
mode collapse. As it is known that incorporating image-level
labels to the discriminator enhances coverage of classes in
the data, utilizing pseudo dense semantic information could
facilitate semantic diversities in the generated images.

In Fig. 9 and Fig. 8 (a), we show some selected results
of our method on the evaluated datasets. We visualize Style-
GAN2 with GGDR for FFHQ and LSUN, and ADA with
GGDR for other datasets. More uncurated images are shown
in the supplementary material. Since our method tends to
improve the recall than the precision, it is hard to show
visual improvement with the limited numbers of samples.
Instead, we compare the worst samples in Fig. 6 (a). We
follow the method of [38] to sort the samples, which uses
the Inception [57] model to fit a gaussian model and sorts

ADA ADA+GGDR

(a) Worst sample comparison

StyleGAN2 StyleGAN2+GGDR

(b) Comparison of the the encoder feature maps in the discriminators

Figure 6. (a) Qualitative comparison of worst-sample images with
and without GGDR on AFHQ. (b)k-means clustering of the feature
maps of the encoder in the discriminator with and without GGDR
loss. From top to bottom, real images, feature maps that are 8(k =
3) and 16(k = 6) pixels wide.

6



0 2 4 6 8 10 12 14
Iterations(thousands)

100

150

200

250

300

350

400

450
FI

D
StyleGAN2 w/o GGDR
with GGDR-1
with GGDR-2
with GGDR-3
with GGDR-4

(a) FIDs in the early training phase

0 2500 5000 7500 1000012500150001750020000
Iterations

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

Pi
xe

l a
cc

ur
ac

y

ADA w/o GT(FIDs: 15.7)
ADA with GGDR(FIDs: 12.0)

(b) Downstream task result

Figure 7. (a) FID score graph of multiple experiments with GGDR
in the early training phase on LSUN Cat. (b) Validation pixel accu-
racy on the ADE20K segmentation task with the frozen discrimina-
tor trained with and without GGDR.

by the log-likelihood using it. We can see the worst samples
of our method still contain objects unlike those of ADA.
It is interesting that [38] reports similar improvements on
the worst samples by utilizing pretrained models for the
discriminator. We conjecture that the feature maps of the
generator plays similar role with the pretrained models in
their works [38, 48].

4.2. Analysis and ablation study

The proposed GGDR supervises a discriminator using the
intermediate feature maps of a generator in a GAN model,
so it depends on the quality of the generator feature maps.
In Sec. 2.2, we show that the feature maps of the generator
contain valid semantic information even in the early stage.
In addition to the visualization, we measure the FIDs in
early iterations and show in Fig. 7 (a). To check the effect
of initializations, we run multiple experiments on LSUN
Cat. In early iterations, GGDR can interfere the performance
by using less trained feature maps and bad initialization.
However, after only several thousand iterations, StyleGAN2
with GGDR starts to converge faster and shows better scores.

In Table 5, we conduct ablation studies to investigate

(a) Samples on CIFAR10 (b) Visualization of the decoder
output on real samples

Figure 8. (a) Random samples by ADA with GGDR on CIFAR-10
dataset. (b) k-means clustering of the feature maps of the decoder
in our discriminator on real images(k = 6).

Target FID

None 7.98
8× 8 7.57
16× 16 6.56
32× 32 5.98
64× 64 5.28

(a) Target size

Activation FID

Linear 5.28
leaky ReLU 5.43

Kernel size FID

1× 1 5.28
3× 3 5.25

(b) Decoder design

Method # params time(s)

Baseline 4.87M 5.60
+ GGDR 5.05M 6.05

(+3.7%) (+8.0%)

(c) Calculation costs

Table 5. Ablation studies and calculation costs on LSUN Cat with
eight V100 GPUs. Ablation study on (a) the target feature map size
and (b) the decoder design. (c) Calculation costs with and without
GGDR.

the effects of the decoder architecture and the feature map
resolution. In our experiments, we select 64 × 64 feature
maps as the guidance. One may curious the performance
differences if we use different sizes of the guidance feature
maps. As shown in Table 5 (a), utilizing the large and dense
feature maps achieves the best FID scores. Meanwhile, we
design a compact decoder with 1 × 1 convolutional filters
and linear activation for fast training and convergence. In
Table 5 (b), we show that changing decoder activation and
kernel size affects only negligible performance difference.

To analyze the effects of GGDR, we visualize and com-
pare the original discriminator part in Fig. 6 (b). We run
k-means clustering as done in Sec. 2.2. With GGDR loss,
the shared encoder part prefers to learn high-level features
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Figure 9. Selective samples generated by our method. For FFHQ and LSUN datasets, we show the results of StyleGAN2 with GGDR. For
AFHQ and Landscape, we show the results of ADA with GGDR.

which are useful for both tasks, so its feature maps reveal
more semantically meaningful clusters. By guiding to learn
semantic features, our approach can help discriminators to
focus on salient parts of the image instead of meaningless
features. To further analyze, we conduct a downstream ex-
periment, training a shallow segmentation network using
the extracted features by the discriminator with or without
GGDR. As shown in Fig. 7 (b), the accuracy on validation
data shows the discriminator with GGDR has more represen-
tation power on semantic information. Meanwhile, since we
trained on fake images only, it may be curious if the guidance
by fake images is still valid for real images. In Fig. 8 (b), we
visualize the outputs of the decoder of our discriminator on
real image. While the decoder of our method learned using
fake images, we can see that its features well capture the
semantically meaningful regions of the real images.

In Table 5 (c), we show the additional calculation costs
when use GGDR. We can see the additional costs are
marginal where the parameters increase 3.7% and the time
increases 8.0%. For these measurement, we run the Style-
GAN2 on the 256× 256 dataset with eight V100 GPUs.

5. Related Work

Conditional image synthesis utilizing semantic label
map. For the controllability of the generated images, it is
common to exploit semantic layout-level information for the
conditional image generation [21, 41, 61]. SPADE [45] uti-
lizes Spatilally-Adaptive Denormalization which preserves
semantic informations, and OASIS [56] have shown that it
is able to train the conditional GANs using the discriminator
that predicts pixel-level semantic labels, without incorporat-
ing semantic maps as additional conditions. Also, instead of
using explicit semantic ground-truths, it is possible to use the
features from the deep networks for the semantic guidance
of the generator as shown in [10, 51]. Unlike these works,
our method aims at unconditional image generation.

Regularization for GANs. Several works interest to sta-
bilizing the GAN trainings, especially by regularizing the dis-
criminators [33,42,43]. Recently, utilizing augmentations for
the discriminator gained a lot of interests, which was proven
successful in general vision tasks [66,68]. In consistency reg-
ularization (CR) [69, 71], in addition to using regular GAN
losses, a discriminator is penalized by the differences in

8



the outputs between augmented and non-augmented images.
APA [24] regularizes the discriminator by utilizing fake im-
ages as psuedo-real data adaptively. DiffAugment [70] and
ADA [26] use non-leaking augmentations for both gener-
ator and discriminator losses. Recently, several papers use
pretrained models to help discriminator for fast and stable
training. ProjGAN [48] uses EfficientNet [58] as a feature
extractor for the discriminator, and Vision-aided GAN [38]
provides automatic selection from model bank of pretrained
networks to get optimal features for real and fake discrimi-
nation.

Utilization of generator features. Recent studies have
shown that the generators contain rich and disentangled se-
mantic structures in the features. Collins et al. [9] show that
by applying k-means clustering on feature activations of the
generator is possible to extract semantic objects and object
parts in the generated images. Xu et al. [63] have trained
linear mapping between feature maps in the generator and se-
mantic maps, and Endo et al. [11] used the nearest neighbor
matching between feature maps and representative vectors
by averaging the feature vectors corresponding to the ground-
truth semantic labels of inverted images. StyleMapGAN [30]
has used spatial dimensions in the latent codes and group-
ing of the channels to further disentangle spatial semantic
features.

6. Conclusion and limitation
In this paper, we present the efficacy of the dense seman-

tic label maps for unconditional image generation. Inspired
by this observation, we propose a new regularization method
to leverage the feature maps of the generator instead of
human annotating ground-truth semantic annotations to al-
low the discriminator to learn richer semantic representation.
With negligible additional parameters and no ground-truth se-
mantic segmentation map, the proposed GGDR consistently
outperforms strong baselines. Since our method depends on
the performance of the generator, if the generator cannot
learn meaningful representations due to the extremely lim-
ited number of data or initial training collapse, GGDR will
fail to improve the performance. However, thanks to modern
GANs and training techniques, we believe our method can
be easily applied in various situations.
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A. Additional results and visualization
We additionally provide results and their corresponding

feature visualization for the datasets used in the main paper
including CIFAR-10 [37], FFHQ [28], LSUN cat, horse,
church [64], AFHQ [8] and Landscapes [2]. From Fig. 10
to Fig. 14, we show uncurated random samples generated
by our method. For FFHQ and LSUN dataset, we sample
from StyleGAN2 trained with GGDR, and we sample from
ADA trained with GGDR for the others. From Figure 15 to
Figure 17, we visualize the guidance feature maps from the
generator and their corresponding fake images. For feature
map visualization, we run k-means(k = 6) clustering on 64
samples. All visualized feature map size is 64× 64 except
CIFAR-10(8× 8).
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Figure 10. Uncurated results on (top) FFHQ and (bottom) LSUN Cat.
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Figure 11. Uncurated results on (top) LSUN Horse and (bottom) LSUN Church.
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Figure 12. Uncurated results on (top) AFHQ Cat and (bottom) AFHQ Dog
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Figure 13. Uncurated results on (top) AFHQ Wild and (bottom) Landscape.
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Figure 14. Uncurated results on CIFAR-10.
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(a) Visualization on FFHQ.

(b) Visualization on LSUN Cat.

(c) Visualization on LSUN Horse.

Figure 15. Visualization of fake images and their corresponding generator feature maps on FFHQ, LSUN Cat and LSUN Horse.
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(a) Visualization on LSUN Church.

(b) Visualization on AFHQ Cat.

(c) Visualization on AFHQ Dog.

Figure 16. Visualization of fake images and their corresponding generator feature maps on LSUN Church, AFHQ Cat and AFHQ Dog.

18



(a) Visualization on AFHQ Wild.

(b) Visualization on Landscapes.

(c) Visualization on CIFAR-10.

Figure 17. Visualization of fake images and their corresponding generator feature maps on AFHQ Wild, Landscapes and CIFAR-10.
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